A Bayesian Framework to Identify Methylcytosines from High-Throughput Bisulfite Sequencing Data
نویسندگان
چکیده
High-throughput bisulfite sequencing technologies have provided a comprehensive and well-fitted way to investigate DNA methylation at single-base resolution. However, there are substantial bioinformatic challenges to distinguish precisely methylcytosines from unconverted cytosines based on bisulfite sequencing data. The challenges arise, at least in part, from cell heterozygosis caused by multicellular sequencing and the still limited number of statistical methods that are available for methylcytosine calling based on bisulfite sequencing data. Here, we present an algorithm, termed Bycom, a new Bayesian model that can perform methylcytosine calling with high accuracy. Bycom considers cell heterozygosis along with sequencing errors and bisulfite conversion efficiency to improve calling accuracy. Bycom performance was compared with the performance of Lister, the method most widely used to identify methylcytosines from bisulfite sequencing data. The results showed that the performance of Bycom was better than that of Lister for data with high methylation levels. Bycom also showed higher sensitivity and specificity for low methylation level samples (<1%) than Lister. A validation experiment based on reduced representation bisulfite sequencing data suggested that Bycom had a false positive rate of about 4% while maintaining an accuracy of close to 94%. This study demonstrated that Bycom had a low false calling rate at any methylation level and accurate methylcytosine calling at high methylation levels. Bycom will contribute significantly to studies aimed at recalibrating the methylation level of genomic regions based on the presence of methylcytosines.
منابع مشابه
MetMap Enables Genome-Scale Methyltyping for Determining Methylation States in Populations
The ability to assay genome-scale methylation patterns using high-throughput sequencing makes it possible to carry out association studies to determine the relationship between epigenetic variation and phenotype. While bisulfite sequencing can determine a methylome at high resolution, cost inhibits its use in comparative and population studies. MethylSeq, based on sequencing of fragment ends pr...
متن کاملDifferential analyses with DSS
This vignette introduces the use of the Bioconductor package DSS (Dispersion Shrinkage for Sequencing data), which is designed for differential analysis based on high-throughput sequencing data. It performs differential expression analyses for RNA-seq, and differential methylation analyses for bisulfite sequencing (BS-seq) data. The core of DSS is a procedure based on Bayesian hierarchical mode...
متن کاملDiscovery of methylation loci and analyses of differential methylation from replicated high-throughput sequencing data
Motivation: Cytosine methylation is widespread in most eukaryotic genomes and is known to play a substantial role in various regulatory pathways. Unmethylated cytosines may be converted to uracil through the addition of sodium bisulphite, allowing genome-wide quantification of cytosine methylation via high-throughput sequencing. The data thus acquired allows the discovery of methylation ‘loci’,...
متن کاملBiQ Analyzer HT: locus-specific analysis of DNA methylation by high-throughput bisulfite sequencing
Bisulfite sequencing is a widely used method for measuring DNA methylation in eukaryotic genomes. The assay provides single-base pair resolution and, given sufficient sequencing depth, its quantitative accuracy is excellent. High-throughput sequencing of bisulfite-converted DNA can be applied either genome wide or targeted to a defined set of genomic loci (e.g. using locus-specific PCR primers ...
متن کاملThe Application of Next Generation Sequencing in DNA Methylation Analysis
DNA methylation is a major form of epigenetic modification and plays essential roles in physiology and disease processes. In the human genome, about 80% of cytosines in the 56 million CpG sites are methylated to 5-methylcytosines. The methylation pattern of DNA is highly variable among cells types and developmental stages and influenced by disease processes and genetic factors, which brings con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2014